
SIMULATING SENSORNETWORKS IN NS-2 [1ST DRAFT]

Ian Downard
Naval Research Laboratory

Code 5523
4555 Overlook Ave

Washington DC, 20375-5337
downard@itd.nrl.navy.mil

May 22, 2003

Abstract

Building an optimal sensor network involves deliberately addressing each of a wide range of is-
sues, such as physically detecting phenomena, deducing environmental information from raw sensor
data, and communicating important alerts through an ad-hoc wireless network to an outside observer;
all under tight energy constraints. Because of the number and complexity of these issues, the simulation
environment provides an attractive universe where sensor network engineers can easily investigate the
consequences of using various protocols and configurations. This was the motivation behind NRL’s sen-
sor network extensions to ns-2. In this paper, we describe how we added these extensions into the ns-2
framework, and illustrate their utility with a case study examining Mobile Ad-Hoc Network (MANET)
routing within a dynamic sensor network. Finally, we will describe the limitations inherent to our simu-
lation environment. Some sensor network related features in ns-2 are not compatible with our extensions,
but as ns evolves, so do our on-going attempts at using that framework to accurately model sensor net-
works.

1 Introduction

Our idea of a sensor network is an autonomous multi-hop wireless network with nondeterministic
routes over a set of heterogeneous physical layers. Our purpose is to evaluate how well current routing layer
standards support the requirements of various sensor network applications.

The ns-2 simulation platform offers great flexibility to investigate the characteristics of sensor net-
works because it already contains flexible models for energy constrained wireless ad-hoc networks. In the
ns-2 environment, a sensor network can be built with many of the same set of protocols and characteristics
as those available in the real world. The mobile networking environment in ns-2 includes support for each
of the paradigms and protocols show in Figure 1. In addition to the elements shown in Figure 1, the wireless
model includes support for node movements and energy constraints. By leveraging the existing mobile net-
working infrastructure, we added the capability to simulate sensor networks. The only fundamental aspect
of sensor networks missing in ns-2 was the notion of a “phenomenon channel” through which sensors could

1

be triggered. Once a sensor detects the “ping” of a phenomenon in that channel, the sensor acts according
to the sensor application defined by the ns-2 user. This application defines how a sensor will react once it
detects its target phenomenon. For example, a sensor may periodically send a report to some data collection
point as long as it continues to detect the phenomenon, or it may do something more sophisticated, such as
collaborate with neighboring sensor nodes to more accurately characterize the phenomenon before alerting
any outside observer of a supposed threat. For each sensor network there is a unique sensor application to
accomplish threat detection, surveillance, environmental monitoring, etc. With ns-2, we have provided the
facility to invoke sensor applications by phenomena. With these sensor applications, we can study how the
underlying network infrastructure performs under tight energy, delay, and throughput constraints.

The following sections will document how we extended ns-2 to support simulating sensor networks,
and we’ll illustrate its utility with a case study that examines the trade-offs between two routing algorithms
for a rudimentary sensor application.

Application Layer

CBR
FTP

TELNET

Transport Layer

TCP
UDP

Network Layer

DSDV
DSR

TORA

AODV
OLSR

Data Link Layer

802.11
TDMA
SMAC

Physical Layer

Radio propagation
models with r^-4

attenuation:
Free Space,

Two Ray Ground,
Shadowing

Omni-directional
antenna model
with unity gain

Figure 1: These are some of the paradigms and protocols available for wireless networking in ns-2. Some
protocols like OLSR [4] and SMAC [6] have not yet been incorporated into USC’s ns distributions, but they
can be retrieved from their respective developers’ sites.

2 Related Work

Modeling sensor networks for simulation has not received as much attention from researchers as
other areas like information processing and energy conservation. In fact, we are aware of only one project

2

whose objective included building flexible simulation tools specifically for sensor networks. Park, Savvides,
Srivastava [7] developed extensions to ns-2 for this purpose, but with an emphasis on sophisticated modeling
of energy consumption and emulation (i.e. interfacing with real world sensor nodes). Unfortunately, their
work has not been updated to support subsequent releases of ns-2 since October, 2000.

3 The Extended NS-2 Architecture

Figure 2 shows where our extensions are arranged within the ns-2 framework. The major additions
and modifications are explained below. Section 3.1 shows how our extensions fit into ns-2’s class hierarchy.

ns-2.26/

trace/

mac/

tcl/lib/

queue/

common/

ns-lib.tcl

ns-mobilenode.tcl

ns-namsupp.tcl

mac.cc

ns-mobilenode.cc

ns-mobilenode.h

packet.h

cmu-trace.cc

priqueue.cc

cmu-trace.h

phenom/

sensornets-NRL/

sensoragent.cc

sensoragent.h

phenom.cc

phenom_packet.h

phenom.h

sensorapp.cc

sensorapp.h

Figure 2: This figure illustrates which files in the ns framework were modified or added.

3

trace/cmu-trace.cc TheCMUTrace class is used to print important parts of a packet to the simu-
lation’s trace file. Since we introduced a new packet type for phenomena, we had to add the corre-
sponding format function in this class.

tcl/lib/ns-lib.tcl This component of the infrastructure interprets node configurations specified in
the ns-2 simulation script. Our extensions introduced two new node types, the sensor node and the
phenomenon node. Hence, we added some arguments in thenode-config function to accommo-
date them.

tcl/lib/ns-mobilenode.tcl In ns-2’s virtual world, we’re using its existing capacity for multi-
channel wireless networking as a means to emanate phenomena of various kinds. By using a dedicated
channel for phenomena, we can simulate the unique physical medium that that they occupy in the
real world. Thus, sensor nodes will need to have two interfaces, one to the 802.11 channel and
one to the PHENOM channel. We implemented this kind of “multi-homed” capability in theadd-
PHENOMinterface procedure ofns-mobilnode.tcl .

common/packet.h Each packet in ns-2 is associated with a unique type that associates it with the pro-
tocol that it belongs to, such as TCP, ARP, AODV, FTP, etc. Since we created a new protocol for
phenomena, we defined it’s corresponding packet type in thepacket.h header file.

mac/wireless-phy.cc Ns-2 contains an energy model for wireless nodes which can be used to in-
vestigate the benefits of various energy conservation techniques, such as node sleeping or leveraging
optimal network densities. The model includes attributes for specifying the power requirements of
transmitting packets, receiving packets, or idly standing by during times of network inactivity. Sens-
ing phenomena is a process that may consume power at another rate, so it’s important to consider this
where sensor network simulations are concerned. Inmac/wireless-phy.cc , we’ve included the
capability of specifying the amount of power consumed by nodes while sensing phenomena.

We modeled the presence of phenomena in ns-2 with broadcast packets transmitted through a des-
ignated channel. The range of phenomena is the set of nodes who can receive the PHENOM packets in that
channel. This pattern will follow whichever radio propagation model (free space, two ray ground, or shad-
owing) included with the PHENOM node’s configuration. These propagation models roughly cover a circle,
but other shapes could be achieved by varying the range of PHENOM broadcast packets and creatively
moving a set of PHENOM nodes emenating the same type of phenomenon.

Emenating PHENOM broadcast packets is accomplished by the “PHENOM routing protocol”1,
which simply broadcasts PHENOM packets with a certain configureable pulserate. When a PHENOM
packet is received by a node listening on the PHENOM channel, a receive event is passed to that node’s
sensor application.

Every sensor network simulation must have PHENOM nodes which trigger sensor nodes, but the
traffic sensor nodes generate once they detect phenomena depends on the function of the sensor network.

1This functionality best fit into ns-2’s existing ad-hoc wireless networking infrastructure as a routing protocol, even though it
does not route at all. The MAC layer it operates above must be specified in the PHENOM node’s configuration. Although real-
world phenomena can interfere in a variety of ways, we ignore this aspect and use non-interfering phenomena in order to reduce
the randomness of traffic patterns and simplify the analysis of routing algorithms. So, in our simulations, we configure PHENOM
nodes with the basic “Mac” class, which prevents channel contention.

4

For example, sensor networks designed for energy efficient target tracking [8] would generate more sensor-
to-sensor traffic than a sensor network designed to provide an outside observer with raw sensor data. This
aspect of the simulation is defined by the sensor application, which is a modular component of the simulation
environment intended to be customized according to the traffic properties associated with the sensor network
being simulated.

phenom/phenom.cc This file implements the PHENOM routing protocol used for emenating phenom-
ena. It includes parameters for the pulse rate and the phenomenon type (Carbon Monoxide, heavy
seismic activity, light seismic activity, sound, or generic). These types are just names which can be
used to identify multiple sources for phenomena in trace files. The pulse rate is the only parameter
which actually controls how a PHENOM node emenates.

sensornets-NRL/sensoragent.cc The ns manual [2] describesagentsas “endpoints where network-
layer packets are constructed or consumed”. Sensor nodes use a “sensor agent” attached to the PHE-
NOM channel for consuming PHENOM packets, and a UDP or TCP agent attached to the wireless
network channel for constructing packets sent down from the sensor application. Sensor agents act as
a conduit through which PHENOM packets are received and processed by sensor applications. The
sensor agent does not actually look at the contents of the PHENOM packet, it simply marks the packet
as received and passes it to the sensor application. This agent is implemented insensoragent.cc .

sensornets-NRL/sensorapp.cc The sensor application defined in this file utilizes node color and
generates sensor reports to show when the corresponding sensor node detects phenomenon2. Specif-
ically, when the node is receiving PHENOM packets, this application changes the node color to red,
activates an “alarm” (public variable), and sends a “sensor report” of MESGSIZE bytes to the sink
node of a UDP (or TCP) connection once per TRANSMITFREQ seconds. When the node has not
recieved a PHENOM packet in the timeout period specified by SILENTPHENOMENON, then the
node color changes back to green. If node color is desired to illustrate energy levels instead of sensor
alarm status, then that aspect of the application can be disabled with DISABLECOLORS.

An example of how this sensor application is visualized by nam is shown in Figure 3.

3.1 The Extended Ns-2 Class Hierarchy

Doxygen was used to generate the following figures which illustrate how our extensions to ns-2 fit
into its class hierarchy. Dotted lines show where a class isusingthe methods and members of another class.
Solid lines show where a class isinheriting the methods and members from another class.

4 Capabilities, Guidelines, and Caveats.

This section describes the capabilities of our sensor network extensions, gives some guidelines for
configuring your own simulations, and attempts to explain some areas of likely confusion. In this section,

2The four environment variables which can be used to customize this application are SILENTPHENOMENON, DIS-
ABLE COLORS, MESGSIZE, and TRANSMITFREQ. Anytime their values are changed, the sensorapp.o file must be rebuilt
(just runmake on the ns-2 Makefile).

5

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19
18

17

16

15
14

13

12

11

10
9

87

6

5

4

3

2

1

0

Figure 3: Visualization of a simulated sensor network with 25 stationary sensor nodes, 20 mobile phenom
nodes simulating a gas cloud, and one stationary data collection point. The red sensor nodes detect the
phenomenon, the green ones do not. The phenomenon nodes are blue, and the data collection point is black.
The simulation is 20 seconds long.

6

Figure 4: Collaboration diagram for the PHENOM class.

7

Figure 5: Collaboration diagram for the SensorAgent class.

8

Figure 6: Collaboration diagram for the SensorApp class.

9

we assume the reader is already familiar with setting up mobile node simulations in ns-2. For readers who
are not, you will probably have difficulty following along until you have done some basic ns-2 wireless
simulations. You may find the necessary background at the following URLs:

http://nile.wpi.edu/NS/
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://www.isi.edu/nsnam/ns/tutorial/nsscript5.html

The easiest way to create sensor network simulations is to use thescript maker.pl utility in
the simulations aids directory distributed with our extensions. This Perl script contains commonly
used parameters for setting up sensor network simulations and automatically generates the (often) complex
NS simulation script. The remainder of this section describes how to code a sensor network simulation into
the NS simulation script, without using thescript maker.pl utility.

Setting up a sensor network in ns-2 follows the same format as mobile node simulations. The best
way to create your own simulation is to modify the one of the examples distributed with this code.

Places where a sensor network simulation differs from a mobile node simulation are listed below.
Setting upns , god , tracing, topography objects and starting and stopping the simulation are all the same
as in traditional mobile node simulations.

• Configure phenomenon channel and data channel.

Create a phenomenon channel and a data channel. Like mobile nodes, phenomenon nodes use 802.11
for the physical layer. We must configure the two different types of nodes on separate channels, in
order to avoid contention at the physical layer. All phenomenon nodes should be configured on the
same channel, even if they’re emanating different types of phenomena.

set chan 1 [new $val(chan)]
set chan 2 [new $val(chan)]

• Choose a MAC layer to use for emanating phenomena over the existing ns-2 infrastructure for wire-
less communications. Using 802.11 probably isn’t realistic, since phenomena should be emanating
without regard to collisions or congestion control (i.e. do we really need to simulate collisions of
atomic molecules, such as carbon monoxide? Even if we did, I doubt 802.11 would model that very
well...). I recommend using the basic ”Mac“ class for the PHENOM node’s MAC layer, via:

set val(mac) Mac/802 11 ;# MAC type for sensor nodes
set val(PHENOMmac) Mac ;# MAC type for phenomena

• Configure phenomenon nodes with the PHENOM ”routing“ protocol:

Use node-config, just like with mobile nodes, but specify PHENOM as the routing protocol so the
phenomenon is emanated according to the rules defined in phenom/phenom.cc. Also, be sure to
configure in the channel and MAC layer you’ve selected for phenomena broadcasts. In this example,
we selected$chan 1 .

$ns node-config \

10

-adhocRouting PHENOM \
-channel $chan 1 \
-llType $val(ll) \
-macType $val(PHENOMmac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace ON

• Configure the Phenomenon node’s pulse rate and phenomenon type.

The two parameters which can be used to customize the Phenomenon are listed below. They are both
optional.

1. pulserate FLOAT

– FLOAT must be either a floating point number or an integer

– describes how frequently a Phenomenon node broadcasts its presence

– defaults to 1 broadcast per second

2. phenomenon PATTERN

– PATTERN must be any one of the following keywords: CO, HEAVYGEO, LIGHT GEO,
SOUND, TESTPHENOMENON corresponding to Carbon Monoxide, heavy seismic ac-
tivity, light seismic activity, audible sound, and some other generic phenomenon.

– This option is mostly useful for simulations involving multiple phenomenon nodes, so that
it’s easier to distinguish who a sensor node is detecting by looking at the NS trace file.

– defaults to TESTPHENOMENON
[$node (0) set ragent] pulserate .1 ;#PHENOM emanates 10x/s
[$node (0) set ragent] phenomenon CO ;#Carbon Monoxide PHENOM

• Configure sensor nodes.

Sensor nodes must be configured with the-PHENOMchannel attribute and the-channel attribute.
PHENOMchannelshould be the same as the channel you configured the phenomenon node with. The
other channel is the channel which will be used for mobile-node application layer data, such as sensor
reports. Also, sensor node configurations must specify a MAC protocol for the phenomena channel
and a MAC protocol (such asMac/802 11) for the channel shared with other wireless nodes. Do
this with the-PHENOMmacTypeand-macType attributes.PHENOMmacTypeshould be the same
as the macType used in PHENOM nodes, andmacType should be the same as the macType used in
other nodes participating in the processing of sensor data (probably 802.11).

$ns node-config \

11

-adhocRouting $val(rp) \
-channel $chan 2 \
-macType $val(mac) \
-PHENOMmacType $val(PHENOMmac) \
-PHENOMchannel $chan 1

If desired, a sensor node can be configured so that a specified amount of energy will be deducted from
a sensor node’s energy reserve each time it receives any amount of phenomena at some point in time.
To set this up, the following parameters must be used in node-config:

-energyModel $val(engmodel) \
-rxPower $val(rxPower) \
-txPower $val(txPower) \
-sensePower $val(sensePower) \
-idlePower $val(idlePower) \
-initialEnergy $val(initeng)

Each of those values must be previously initialized, such as:

set val(engmodel) EnergyModel
set val(txPower) 0.175 ;# transmitting power in mW
set val(rxPower) 0.175 ;# receiving power in mW
set val(sensePower) 0.00000175; ;# sensing power in mW
set val(idlePower) 0.0 ;# idle power in mW
set val(initeng) 0.5 ;# Initial energy in Joules

The energy parameters used in node-config are described as follows:

– rxPower .175 ← indicates175mW consumed for receiving a packet of arbitrary size at time
t

– txPower .175 ← indicates175mW consumed for transmitting a packet of arbitrary size at
time t

– sensePower .00000175 ← indicates1.75µW consumed for detecting any amount of phe-
nomena at timet

– initialEnergy 5 ← indicates a total energy reserve of5J available to the sensor

IMPORTANT CAVEAT:

ns-2’s energy consumption model utilizes color to illustrate when a node is about to exhaust it’s energy,
so the node coloring which is part of the sensor app should be disabled with theDISABLE COLORS
definition insensorapp.cc . Remember to run make again to compile those changes into the NS
executable.

In addition toDISABLE COLORS, some other sensor node parameters can be specified insenso-
rapp.cc . These parameters are listed below:

12

SILENT PHENOMENON is the seconds of quiescence required for a sensor to go off it’s alarming
state. Example:

#define SILENT PHENOMENON 0.2

DISABLE COLORS disables node color changes invoked by the sensor application. This is useful
when it is desired to use node color to illustrate a node’s energy reserves. Example:

#define DISABLE COLORS FALSE

MESG SIZE is the size (in bytes) of the messages to send to the gateway, or data collection point,
or whatever you want to call the sink node attached to this sensor node (over UDP, for example).
Example:

#d#define MESG SIZE 1000

TRANSMIT FREQ is the frequency with which a sensor node triggered by PHENOM pkts will
send a message to the gateway, or data collection point, or sink, or whatever you want to call
the sink node attached to this sensor node (over UDP, for example). Units are in seconds, so
a message of sizeMESGSIZE bytes will be transmitted to the gateway node once for every
TRANSMITFREQseconds in which the sensor node has received one or more PHENOM pack-
ets.

#define TRANSMIT FREQ 0.1

• Configure non-Sensor nodes (such as data collection points, or gateways for the sensor network).

Nodes which are not sensor nodes or phenomenon nodes, should not be configured with aPHE-
NOMchannel , since their only interface is to the mobile-node channel. This is done with the-
PHENOMchannel "off" attribute.

$ns node-config \
-adhocRouting $val(rp) \
-channel $chan 2 \
-PHENOMchannel "off"

• Attach sensor agents.

Create a sensor agent for each sensor node, and attach that agent to its respective node. Also, specify
that all packets coming in from the PHENOM channel should be received by the sensor agent. In
the following example,$i would represent the node number for the sensor node currently being
configured.

set sensor ($i) [new Agent/SensorAgent]
$ns attach-agent $node ($i) $sensor ($i)

specify the sensor agent as the up-target for the sensor node’s link
layer configured on the PHENOM interface, so that the sensor agent
handles the received PHENOM packets instead of any other agent
attached to the node.
[$node ($i) set ll (1)] up-target $sensor ($i)

13

• Attach UDP agent and sensor application to each node (optional).

How the sensor nodes react once they detect their target phenomenon is a behavior which should
be defined as a sensor application. One such application might involve sensor nodes alerting a data
collection point via UDP with information about the phenomenon. The following example illustrates
how an application like that would get setup. Again,$i would represent the node number for the
sensor node currently being configured.

set src ($i) [new Agent/UDP]
$ns attach-agent $node ($i) $src ($i)
$ns connect $src ($i) $sink

set app ($i) [new Application/SensorApp]
$app ($i) attach-agent $src ($i)

• Start the phenomenon node.

The Phenomenon node starts emanating immediately once the simulation starts, but the range of it’s
broadcasts can be reduced to such a small area that it’s effectively inaudible to any sensors (unless
they occupy the exact same coordinate in the grid). Here’s an example of how a phenomenon node
can be turned off:

$ns at 6.0 {[$node ($i) set netif (0)] set Pt 0.0001 }

Pt is the range of the broadcast, and$i is the node id of the Phenomenon node.

• Start the sensor application.

The sensor node will receive PHENOM packets as soon as the sensor agent is attached to the node.
Since the sensor agent does nothing but notify the sensor application of the event, ”I received PHE-
NOM“, the sensor node does not visibly react to PHENOM packets until the sensor application has
been attached andstarted. The following example shows how to start a sensor application:

$ns at 5.0 "$app ($i) start $sensor ($i)"

5 Case Study: MANET Routing Within a Dynamic Sensor Network

This case study begins to show the types of results one can achieve from sensor network simulations
with ns-2. Suppose we’d like to characterize how well AODV scales with the size of a sensor network
running the sensor application defined at the end of section??. We will look at networks of stationary
sensors with inifinite energy placed in a grid withd units of distance between adjacent nodes. Our network
will range from 50 sensor nodes to 2000 sensor nodes. We will limit the broadcast range of 802.11 radios
and the range of the phenomenon to

√
2d, as shown in Figure 7. Since we’re using the Two-ray Ground

radio propagation model, nodes within this boundary always receive the broadcast and nodes outside never
receive the broadcast. In reality, this boundary is a random variable due to complex fading and interference
effects.

We will excite the network with a single phenomenon node which slowly travels along the perimeter
of the sensor network grid. As the grid density increases, the phenomenon will encounter sensor nodes more

14

frequently. Thus, as the grid density increases, AODV will flood more route requests through the network.
As the network becomes more congested, we should observe higher latency and higher drop rates in sensor
reports delivered to the stationary data collection point.

All the UDP traffic in our network consists of sensor reports, so we measured drop rates by counting
the number of dropped udp packets logged in the ns trace file.

How did we measure latency?

6 Software References

6.1 NRL Sensor Network Extensions to NS-2

The NRL SensorSim extensions to NS–2 facilitate simulating sensor networks. The code and doc-
umentation for extending NS–2.1b9a or NS–2.26 is available here:

http://pf.itd.nrl.navy.mil/projects/nrlsensorsim/

6.2 NRL OLSR Extensions to NS-2

One of the original motivations behind building the sensor network extensions into ns-2 was to
compare the behaviors of OLSR and AODV routing algorithms. NRL’s OLSR extension to NS–2 is available
for download via CVS [2]. To check out all the nrlolsr files (from a Linux box), type the following two
commands:

cvs -d :pserver:anonymous@nrlolsr.pf.itd.nrl.navy.mil:/cvsroot/nrlolsr login

cvs -z3 -d :pserver:anonymous@nrlolsr.pf.itd.nrl.navy.mil:/cvsroot/nrlolsr co .

The instructions for including nrlolsr extensions in ns-2 are documented in nrlolsr/readme. To get
the code, follow the nrlolsr-NS- link at this page:

http://pf.itd.nrl.navy.mil/projects/olsr/

7 Bugs

one bug: phenom nodes receive bcasts from other phenom nodes... not realistic, but doesn’t seem
to effect simulation results on the IP side of the sensor network. But, it does make the simulations much
longer and trace files much bigger when multiple phenom nodes are being used in close proximity.

No bugs are presently known with the sensor network extensions to ns-2, but they no doubt exist.
Please direct all bug reports to Ian Downard,<downard@itd.nrl.navy.mil> .

15

8 Future Work

Much more effort should be made to improve how phenomenon emanates. Presently, it follows the
behavior of an 802.11 broadcast, configured with one of the following radio propagation models:

1. Free Space Model

2. Two Ray Ground Model

3. Shadowing Model

The first two models represent the communication range as an ideal circle, whose boundary is
an absolute limit on signal receivability. The Shadowing model applies a more probabilistic means of
determining whether a receiver on the boundary can receive the signal.

The radio propagation model should be extended to create a “phenomenon propagation model”
which could specifically address the characteristics of various phenomenon available for sensor network
simulations.

References

[1] The Network Simulator - ns-2,http://www.isi.edu/nsnam/ns/

[2] The ns Manual,http://www.isi.edu/nsnam/ns/ns-documentation.html

[3] NRL’s Sensor Network Extension to ns-2,http://nrlsensorsim.pf.itd.nrl.navy.mil/

[4] NRL’s OLSR implementation for ns-2,http://pf.itd.nrl.navy.mil/projects/olsr/

[5] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta Jetcheva. “A performance
of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” in proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM), 1998.

[6] Wei Ye, John Heidemann, Deborah Estrin. “An Energy-Efficient MAC Protocol for Wireless Sensor
Networks,” in proceedings of the IEEE INFOCOM, 2002.

[7] SensorSim: A Simulation Framework for Sensor Networks.
http://nesl.ee.ucla.edu/projects/sensorsim/

[8] H. Yang, B. Sikdar. “A Protocol for Tracking Mobile Targets using Sensor Networks,”Pro-
ceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications , pp. 71-81, Anchorage, AK, May 2003.

16

12 13 14 15

18 19 20

22 23 24 25

17

1098

2 3 4 5

7

11

16

21

1

6

d

d

Figure 7: This figure illustrates the maximum broadcast used in our experiments. If we use the Two-ray
Ground radio propagation model, then the broadcast range for node 13 can never broadcast further than the
ideal circle with radius

√
2d.

17

